QUANTUM EFFECTS IN ROTATIONAL RELAXATION
OF A FREELY EXPANDING GAS
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It is well known that the equilibrium between the translational and rotational degrees of freedom is dis~
turbed in expansion of a molecular gas into a vacuum [1, 2]. Departure of the rotational energy of the gas
from the equilibrium for a given kinetic temperature results from a sharp drop in the gas density downstream,
leading to a decrease in the number of gas-kinetic collisions experienced by individual molecules.

There is another cause for the equilibrium being disturbed, of a purely quantum nature. Ina sharp fall
of kinetic temperature Ty, occurring when the gas expands in the vacuum, the Mess adiabatic parameter,
describing energy transfer between highly excited rotational levels unable to relax, becomes larger than unity.
Below a certain temperature (characteristic for a given rotational level) under adiabatic collision conditions,
the probability of a rotational transfer begins to fall sharply [3, 4]. Thus, as Tt decreases, the relaxation
time TR will increase.

In the available theoretical papers dealing with distribution of rotational energy in flow of expanding
nitrogen (e.g., see [6-7]), TR is calculated on the basis of classical mechanics. However, when there is rapid
cooling of a gas, Ty becomes less than the distance between the highly excited rotational levels, and one cannot
regard the rotational spectrum of the molecule as being continuous. For the rotational levels N, which are
effectively populated at room temperature the classical approach in calculating 7 leads to an appreciable dis-
tortion of the result in the range T; <100°K.

This paper carries out a theoretical investigation of the distributions of rotational and translational
energy along the axis of a jet of nitrogen expanding into vacuum. The system of gasdynamic equations for a
model expansion from a spherical source is solved. The relaxation time of the gas in the low Ty range is cal-
culated on the basis of quantum mechanics.

1. We consider the process of establishing equilibrium among rotational states in a steady-state expan-
sion of inviscid, non-heat-conducting nitrogen from a spherical source. - In the computations the N, molecule
is approximated by a rigid rotator. The original system of equations includes the equations of continuity,
momentum, energy and the equation of state [5]. The system is closed by the relaxation equation, written in the
T-approximation:

udTpfdr = (T, — Tp)ltg,

where r is the distance from the center of the source; u is the flow velocity; and TR=ER/R (R is the gas con-
stant, and ER is the rotational energy per mole of gas). We note that in the expansion process the Boltzmann

nature of the rotational energy distribution is disturbed [2], and therefore TR is not typical of the relative level
populations.

It is convenient to reduce the original system of equations to dimensionless form, referring all the quan-
tities to their values on the sonic sphere, where the Mach number M=1. Then the unique similarity parameter
of the problem becomes the dimensionless parameter ¢ = p*u*r*/p*ty, where p and p are the gas density and
pressure, and the superscript * is used to denote quantities on the sonic sphere.

The boundary conditions we take to be r/r*=1, Ty/T*=1, TR/T*= {,u ]/ ———RT* =14. We assume that in

a certain §-layer at the surface of the spherical source, whose boundary is given by the condition M=1.,15, the
supersonic flow remains in equilibrium. The numerical integration of the closed system must begin from the
boundary of the é~layer. The numerical method used is similar to that applied in [5].

2. We estimate T on the basis of approximate models. In the Parker model [8] a quantity, the recipro-
cal of TR, is defined as the ratio of the rotational energy obtained for a nonrotating rotator to the collisional
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energy. In the calculation, based on classical mechanics, it is assumed that the rotators lie in one plane; it is
also assumed that each rotator has two centers of repulsion, which do not coincide with the centers of the
atom, and one center of attraction, lying at the center of gravity of the model.

Curve 1 in Fig. 1 shows the calculated relaxation times from Eq. (43) of [8]. In calculating pTR we used
the molecular interaction potential parameters, given in [8]. Curve 1 can be approximated by the power func-
tion ' 7

pip =CT T
with the parameters m=1 and C=1.65°10"% gm/cm - sec - °K, taken from [6].

As T tends to zero, prR also tends to zero. The reason is that transfer of energy between molecules
with larger moments of rotation is more difficult. As can be seen from Fig. 1, the value of prR calculated
classically does not show a tendency to increase with the decrease of Ty under conditions of adiabatic exchange
of rotational energy.

‘It is known that the relaxation process is limited by transitions from the effectively populated highly
excited rotational levels under the given conditions. Thus, in the low range of T; the energy relaxation time
TR can be approximated by the relaxation time for a certain rotational level j*
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where k is the Boltzmann constant; ¢, is the gas-kinetic cross section; u is the reduced mass of the partners;
and (Pjx j*-;) is the average transition probability j* —j*—2 in one gas-kinetic collision.

Before the start of discharge at room temperature the maximum population of nitrogen occurs for the
j=6 rotational level. Thus, if we put j*=6, the estimate obtained will be an upper limit for 7. Apparently,
the relaxation time for the j=4 level in the case considered can be regarded as a lower bound on TR.

The general method of calculating the probabilities for rotational transitions has been described in {3, 4].
The calculation of (P * J*_2> for j*=4, 5, 6 was carried out using Eq. (14) of [4]. In the computation we used
the potential parameters given in [8]. By allowing for the high degree of symmetry of the N, electron shell
we can approximate to the anisotropy parameter of the first nonzero term c, in the expansion of the molecular
potential in Legendre polynomials by the anisotropy parameter for the potential pair Ny-structureless particle:
¢,=0.5 [9]. The unique condition for using Eq. (14) of [4] is the adiabatic condition, which holds up to tempera-
tures as high as 100°K for j*=4, 5, 6.

Curves 2-4 of Fig. 1 show the results of calculating prg from Eq. (2.1)for j*=4, 5, 6, respectively. Itcanbe
seen from Fig. 1 that prR, calculated using Eq. (2.1), increases with decrease of T¢. In the region of Tt where
the adiabatic condition breaks down, curves 2-4 undergo a smooth transition to curve 1, which was calculated
using the classical Parker model. By replacing the energy relaxation time by the relaxation time for level j*,
in spite of the approximation, one can correctly represent the qualitative nature of the equilibrium establish-
ment process with respect to rotational states, i.e., an increase of 7 with reduction of Tj.



3. Figure 2 shows the distributions of Ty along the flow. Curve 1 shows TR, calculated using classical ‘
mechanics, and curves 2-4 were obtained using curves 2-4, respectively, of Fig. 1 for the value of prR. In the
calculation it is assumed that o =2730, -

If one takes into account that the solution of the gasdynamic equations describing expansion of the gas
from a spherical source will satisfactorily represent the behavior of the flow near the axis of a jet issuing
from a circular aperture, one can compare the calculated distributions with experimentally measured values.
The critical source radius is uniquely related to the radius of the exit aperture of the jetr,: r*=Are, A=
1.15 for N, [10]; @=2730 corresponds to pyre =240 torr * mm for Te= 290°K, where py and T, are the stagnation
pressure and temperature. In the case considered we neglected the effect of viscosity on the gas flow param-
eters.

Curves 5 and 6 of Fig. 2 show the results of measurement of TR along the flow (curve 5 was taken from
[1], and curve 2 from {2]). We note that the results obtained in [1] are low, since the sensitivity of the experi-
mental equipment did not allow recording of part of the luminescence spectrum which corresponds to the
excited rotational N, levels. The results given in [2] are somewhat high, since the Thot" phonon gas either
takes part in the relaxation process, slowing it down, or makes its own contribution to the luminescence spec-
trum.

Thus, the experimental curves 5 and 6 are upper and lower bounds on the distribution of rotational energy
along the flow. They form a "fork" shape encompassing only curves calculated allowing for the quantum
nature of rotational energy exchanged. It can be seen from Fig. 2 that the use of classical models in calcu-
lating 7p leads to values of TR which are several times too low.

Curve 7 of Fig. 2 is the temperature characteristic of an iseniropic expansion of nitrogen from a circular
aperture, calculated along the jet axis under the assumption that the distribution function for rotational states
retains its Boltzmann form, i.e., ER =RTt.

The resuits of the calculations and the experiments shown in Fig. 2 demonstrate the presence of a con-
siderable departure of rotational energy from the equilibrium value for the given temperature, and point to the
need to use quantum methods in describing rotational relaxation in an expanding flow of nitrogen.
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